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Exact localized solution for nonconservative systems with delayed nonlinear response

N. N. Akhmediev
Optical Science Centre, Research School of Physics Science and Engineering, The Australian National University, Canber

Australian Capital Territory 0200, Australia

M. J. Lederer and B. Luther-Davies
Laser Physics Centre, Research School of Physics Science and Engineering, The Australian National University, Canberr

Australian Capital Territory 0200, Australia
~Received 24 September 1997!

We found an exact solitonlike solution for systems with gain and loss and delayed nonlinear response. An
example of an application of this solution is the passively mode-locked laser with slow saturable absorber.
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Localized structures are objects that define, to a large
tent, the general dynamics of dissipative systems far fr
equilibrium. These are known as ‘‘solitary waves’’ or ‘‘sol
tons’’ in a broad sense. Properties of these waves in var
conservative and nonconservative systems attracted a
deal of attention in recent years. The passively mode-loc
laser @1–7# is an example of a dissipative system far fro
equilibrium. Ultrashort pulse generation in laser systems
based on a variety of schemes including figure-eight fi
laser design@1#, fast saturable absorber@5#, coupled cavity
@6#, additive pulse mode locking@7#, nonlinear polarization
rotation@8,9#, and stretched pulse operation@10#. The use of
a semiconductor mirror-saturable absorber with relativ
slow response time and even slower recovery time has b
suggested for a passively mode-locked soliton laser@11#. Ex-
perimental verification of this possibility has been repor
in @12,13#. Some design aspects of the semiconductor s
rable absorber mirrors are given, e.g., in@14#. In the original
works @12,13# the pulses were approximated by the solito
of the nonlinear Schro¨dinger equation. However, in system
with gain and loss this approximation is too rough and
close to reality for a very limited range of parameters. In
present work we have found the exact solitonlike solution
pulses generated by a solid-state laser with a semicondu
saturable absorber with slow recovery time when the pu
amplitude is much smaller than the saturation threshold
the absorber.

Despite the fact that lumped effects are present in
laser, it can be modeled as a distributed system if the cha
to the field per round trip are small. The pulse evolution
then governed by the modified NLSE with nonlinear nonco
servative terms@4,11,15#:

icz1
D

2
c tt1ucu2c5 i @g~Q!2ds~ ucu2!#c1 ibc tt , ~1!

where z is the cavity round-trip number,t is the retarded
time, c is the normalized envelope of the optical field,D is
the group velocity dispersion coefficient,b stands for spec-
tral filtering (b.0), g(Q) is the gain in the cavity which
depends on the total energy,Q5*2`

` ucu2dt, of the pulse in
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one round trip, andds(ucu2) is the total loss including loss in
the semiconductor saturable absorber.

The gain termg(Q) in Eq. ~1! describes a gain medium
with a recovery time much slower than the round-trip time
the cavity and does not depend explicitly ont. It describes
depletion of the gain medium and depends on the total p
energy

g~Q!5
g0

11Q/EL
, ~2!

whereg0 is the small signal gain andEL is the saturation
energy. The value ofg(Q) decreases with the pulse energ
so that within each round trip the pulse energy is limited

The absorption in the semiconductor can be described
the rate equation

]ds

]t
52

ds2d0

T1
2

ucu2

EA
ds , ~3!

whereT1 is the recovery time of the saturable absorber,d0 is
the loss introduced by the absorber in the absence of pu
andEA is the saturation energy of the absorber.

The solution of Eq.~3! can be written in general form:

ds~ t !5d0F 1

T1
E H expF E S 1

T1
1

ucu2

EA
DdtG J dt11G

3expF2E S 1

T1
1

ucu2

EA
DdtG . ~4!

However, this expression does not allow the general solu
of Eq. ~1! to be found.

We now consider the limiting case when the pulse am
tude is well below the saturation level. The gain coefficieng
is constant if we deal with stationary solutions of Eq.~1!
whenQ is constant. We also assume that the relaxation t
is large in comparison to the pulse width. In this case,T1
→`, and the loss changes across the pulse are given by
approximate formula
3664 © 1998 The American Physical Society
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ds~ t !5d0 expF2E S ucu2

EA
DdtG'd02aE

2`

t

ucu2dt1•••,

~5!

where a5d0 /EA . Substituting this into Eq.~1! we obtain
the equation

icz1
D

2
c tt1ucu2c5 idc1 ibc tt1 iacE

2`

t

ucu2dt, ~6!

where d5g2d0. This equation is similar to the comple
Ginzburg-Landau equation~CGLE! @16,17#, except for the
nonconservative nonlinear term in the right-hand-side of
~6!, which is nonlocal in time. This equation has been st
ied in a number of publications related to various physi
situations@18–20#. Exact solution of Eq.~6! without a spec-
tral filtering term has been presented in@19# and investigated
numerically in@20#. It has also been shown@18# that Eq.~6!
has a pulselike solution—‘‘autosoliton’’ but exact solutio
has not been found. It is clear though that an explicit form
the solution is very important for its further analysis.

We have found that Eq.~6! has the exact solution, whic
is the soliton, moving with velocityV:

c5@A~ t2Vz!#11 ideiKt 2 ivz, ~7!

where

A~x!5
A0

cosh~gx!

d52
3D

4b
1A9D2

16b2
12,

g5
3ad~4b21D2!

4b~2b2Dd!
6AF3ad~4b21D2!

4b~2b2Dd! G2

1
2~d2bK2!

2b2dD
,

~8!

A05gA3dS b1
D2

4b D , K52
3ad2~4b21D2!

8b2~11d2!
,

V5KS D2
2b

d D , v5
D

2
~K22g21d2g2!22bdg2.

For obtaining the solution, we used a method similar to
one presented in@16# ~see Chap. 13!. All the parameters of
this solution including the velocityV are fixed and depend
on the parameters of the equation. However, there can be
branches of the solution given by the two signs in Eq.~8!.
An example of the solution for certain values of paramet
d, b anda is shown in Fig. 1. As can be seen from Fig.
the soliton always sticks to the gradient of the absorpt
curved(t). Different values of loss or gain at different side
of the soliton cause it to move relative to the reference fra
The solution disappears ford→0 where its amplitude goe
to zero. Note thatd is equal to the amount of loss~or gain! at
the left hand side of the pulse. The properties of the solu
vary depending on whether the parameterd is positive or
negative.
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Let first d be negative. In this case,D must be positive
and we have to choose the minus sign in front of the squ
root in the expression forg. The sign in front of the square
root in the expression ford is always positive. The soliton
exists in a certain range of parameters. The limits of ex
tence are defined by the nonequality

F3ad~4b21D2!

4b~2b2Dd! G2

1
2~d2bK2!

2b2dD
.0. ~9!

Figure 2 shows the region where this inequality is valid a
hence, the solution~7! exists~shaded area!. Parameters of the
solution versus parameters of the equation are shown in F
3 and 4.

Dependence of the soliton amplitudeA0 on the four pa-
rameters of the equation is shown in Fig. 3. The dashed
shows the limits in the parameter space defined by Eq.~9!
~boundary of the shaded area!. This means that the soliton
exists only at positive 0,b,bcr and negatived.dcr where
bcr anddcr correspond to the edges of shaded area in Fig
Parametersa andD are bounded from below. The amplitud
is finite in the above range of parameters and has an u
limit. An important parameter for chirped pulses is th
amplitude-width productp/g. It does not depend ona or d
but weakly depends onb and D as shown in Fig. 4. The
velocity of the solitonV does not depend directly ond but
depends linearly ona becauseK depends linearly ona. The
velocity increases with increasingb andD. The velocity is
always positive such that the soliton moves in the direct
of higher gain.

Now, let us consider the case whend is positive. In this
case the solution exists for both signs in the expression fog.
Hence, we have simultaneously two solutions for the sa
set of parameters. Below, we restrict ourselves to the cas
positive sign in Eq.~8!. Moreover, the solution exists fo
both normal and anomalous dispersion~negative and positive
D). This is not surprising@21#, because in systems with gai
and loss, the pulse is the result of balance not only of
dispersion and nonlinearity~which is impossible at negative
D) but also the result of balance between gain and lo
However, for negativeD the width of the pulse is much
greater than for the positiveD ~anomalous dispersion! case
at the same values of other parameters. Dependence o
soliton amplitudeA0 on the four parameters of the equatio

FIG. 1. Soliton profile~solid lines! and the loss curved(t)5d
1a*2`

t ucu2dt ~dotted line! defined by the exact solution
Eq. ~7! for d520.015,a50.1, b50.02, andD511.



s
ls
o
is

of
n-

s
is
nd

n-
of

en

the
and

rs

he

rs of

3666 57BRIEF REPORTS
in the case of positived is shown in Fig. 5. The amplitude
increases to infinity whenb decreases to zero. This show
that spectral filtering is crucial for the existence of the pu
in this case. We can also see that the solution exists for b
signs ofa except for a certain point where the amplitude

FIG. 3. Dependence of the pulse amplitude on the paramete
the equation~a! a, ~b! b, ~c! D, and~d! d ~case of negatived).

FIG. 2. The space of parameters~a! d andb and ~b! D anda
where soliton solution~7! exists. Shaded area is defined by t
inequality ~9!. Parameters of calculation are shown in the plot.
e
th

zero. The amplitude also goes to zero whend→0. The ve-
locity of the pulse is again positive for both signs ofD.

For applications one of the most important properties
the pulses is their stability. Clearly the background is u
stable because of the positive gain on one~negatived) or
both ~positive d) sides of the pulse. Total gain is alway
positive on the right hand side of the pulse. This region
unstable with respect to both generation of continuum a
new pulses. However, for negatived, if we take into account
a finite relaxation time this unstable region is finite and ge
eration of new pulses can be controlled by the depletion
the gain medium.

Most importantly the pulse itself is always unstable wh
the parameters in the equation~6! including d are fixed. In
fact, any increase of the amplitude of the pulse relative to
exact solution increases the total gain across the pulse

of

FIG. 4. Amplitude-width productp/g of the soliton vs~a! b and
~b! D. Paramaters of the calculation are given in the plot.

FIG. 5. Dependence of the pulse amplitude on the paramete
the equationa, ~b! b, ~c! D, and~d! d ~case of positived).
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the amplitude increases exponentially. Any decrease of
pulse amplitude works in the opposite direction and the pu
decays. However, for a proper choice of the parameters,
pulse may become stable ifd depends on the total energy o
the pulseQ as in Eq.~2!. Thed dependence ofQ serves as
a feedback mechanism that stabilizes the pulse for a ce
range of values ofg0, EL , andd0. The feedback mechanism
apparently has a delay of at least one round trip time an
defined by the relaxation time of the gain medium. Stabi
may also depend on this delay time.

FIG. 6. Stable propagation of the soliton solution ford5
20.015,a50.1, b50.02,D511, g055, EL50.00527,d050.1.
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Using the exact solution, the pulse energy can easily
calculated asQ52A0

2/g56dg(b1D2/4b). Substituting
Q5Q(d) into Eq. ~2! we have the equation

g0

11Q/EL
2d05d, ~10!

which gives stationary values of the parameterd. The exis-
tence and the number of solutions of Eq.~10! depend on the
values of the parametersg0, EL , andd0. Stability of these
stationary solutions depends on many parameters and is
an open question. Each particular case can be checked
merically. A numerical simulation showing stable propag
tion of the pulse for a certain choice of parameters is sho
in Fig. 6.

Taking into account the relaxation mechanism in Eq.~4!
does not modify the pulse drastically unless the relaxat
time T1 is comparable to the width of the solitong21. On the
other hand, for negatived, the role of the relaxation is to
stabilize the background by returning the system to net l
after the pulse has passed.

N.N.A. and B.L.D. are part of the Australian Photoni
Co-operative Research Center~APCRC!. M.J.L. acknowl-
edges the financial support of Electro Optic Systems P
Ltd. and the Australian Government.
.

sh,

o,

.

.

S.
@1# I. N. Duling, Opt. Lett.16, 539 ~1991!.
@2# J. D. Kafka, T. Baer, and D. W. Hall, Opt. Lett.14, 1269

~1989!.
@3# M. Romagnoli, S. Wabnitz, P. Franco, M. Midrio, F. Fontan

and G. E. Town, J. Opt. Soc. Am. B12, 72 ~1995!.
@4# C.-J. Chen, P. K. A. Wai, and C. R. Menyuk, Opt. Lett.19,

198 ~1994!.
@5# H. A. Haus, J. G. Fujimoto, and E. P. Ippen, J. Opt. Soc. A

B 10, 2068~1991!.
@6# P. A. Belanger, J. Opt. Soc. Am. B8, 2077~1991!.
@7# H. A. Haus, E. P. Ippen, and K. Tamura, IEEE J. Quant

Electron.30, 200 ~1994!.
@8# V. J. Matsas, D. J. Richardson, T. P. Newson, and D.

Payne, Opt. Lett.18, 358 ~1993!.
@9# M. Hofer, M. E. Fermann, F. Haberl, M. H. Ober, and A.

Schmidt, Opt. Lett.16, 502 ~1991!.
@10# H. A. Haus, K. Tamura, L. E. Nelson, and E. P. Ippen, IEEE

Quantum Electron.31, 591 ~1995!.
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